勾股定理逆定理怎么证明

网友 百科知识 2026-01-24 08:59:21 1

勾股定理的逆定理证明

勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a_+b_=c_,则ΔABC是直角三角形;如果a_+b_>c_,则ΔABC是锐角三角形;如果a_+b_根据余弦定理,在△ABC中,cosC=(a_+b_-c_)÷2ab。由于a_+b_=c_,故cosC=0;因为0°y,b>x,∴a_+b_>x_+y_(B)(A)与(B)矛盾,∴∠C不为锐角⑵若∠C为钝角,设HC=y,AH=x得a_+b_=c_=x_+(a+y)_=x_+y_+2ay+a_∵x_+y_=b_,得a_+b_=c_=a_+b_+2ay2ay=0∵a≠0,∴y=0这与∠C是钝角相矛盾,∴∠C不为钝角综上所述∠C必为直角

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。邮箱:303555158@QQ.COM。 欢迎关注 企业摆账网

企业摆账网

企业摆账网提供个人/企业摆账,大额存单质押摆账,银承摆账,工程亮资,企业增资验资,公司注册资本实缴,代办验资报告,企业存款证明,企业资金证明以及上市公司审计过账和美化财务报表等大额资金业务。
扫一扫,添加客服微信
添加客服微信,免费咨询!

Copyright © 格特瑞商务咨询-企业摆账网 版权所有 | 黔ICP备19002813号