poisson分布特征函数求法

网友 百科知识 2026-01-23 22:04:54 1

Poisson分布的特征函数可以通过求解相应的级数来得到。特征函数是一个复数函数,定义为随机变量的指数函数的期望值,即E[e^(itX)]. 对于Poisson分布,其特征函数可以表示为exp(lambda*(e^(it)-1)), 其中lambda为Poisson分布的参数,it为复数变量。这个特征函数可以用于计算Poisson分布的矩、导数等性质,进而用于推导其他统计量的分布性质和进行概率计算。

很简单啊. 特征函数E(exp(itx)),其中x服从泊松分布,于是(我中间都是乘起来的,没写乘号而已) E(exp(itx)) = sum (k从0到无穷) exp(itk) exp(-lambda) lambda^k / k! = exp(-lambda) sum (k从0到无穷) [exp(it)]^k lambda^k / k! = exp(-lambda) sum (k从0到无穷) [ lambda exp(it) ] ^k / k! = exp(-lambda) exp { lambda exp(it) } = exp [ lambda (exp(it) - 1) ],解毕. 原理就是想方设法把指数为k的项并到一起,然后反过来使用指数函数exp(x)的泰勒展开式.以上sum是求和符号,exp是指数符号,^k是k次幂,lambda就是泊松分布的参数.

Tag: poisson分布
免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。邮箱:303555158@QQ.COM。 欢迎关注 企业摆账网

企业摆账网

企业摆账网提供个人/企业摆账,大额存单质押摆账,银承摆账,工程亮资,企业增资验资,公司注册资本实缴,代办验资报告,企业存款证明,企业资金证明以及上市公司审计过账和美化财务报表等大额资金业务。
扫一扫,添加客服微信
添加客服微信,免费咨询!

Copyright © 格特瑞商务咨询-企业摆账网 版权所有 | 黔ICP备19002813号