矩阵的特征值计算公式

网友 百科知识 2026-02-07 01:08:01 0

矩阵特征值的求法是写出特征方程lλE-Al=0左边解出含有λ的特征多项式比如说是含有λ的2次多项式,我们学过,是可能没有实数解的,(Δ<0)这个时候我们说这个矩阵没有【实特征值】但是如果考虑比如Δ<0时有虚数的解,,也就是有虚数的特征值的这样说来就必有特征值。

设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。邮箱:303555158@QQ.COM。 欢迎关注 企业摆账网

企业摆账网

企业摆账网提供个人/企业摆账,大额存单质押摆账,银承摆账,工程亮资,企业增资验资,公司注册资本实缴,代办验资报告,企业存款证明,企业资金证明以及上市公司审计过账和美化财务报表等大额资金业务。
扫一扫,添加客服微信
添加客服微信,免费咨询!

Copyright © 格特瑞商务咨询-企业摆账网 版权所有 | 黔ICP备19002813号