8个常见的泰勒公式

网友 百科知识 2026-01-24 08:46:53 1

8个常用泰勒公式:

sin ⁡ x = x − 1 6 x 3 + O ( x 3 ) arcsin ⁡ x = x + 1 6 x 3 + O ( x 3 ) sin x=x-frac{1}{6} x^{3}+Oleft(x^{3}

ight) quad arcsin x=x+frac{1}{6} x^{3}+Oleft(x^{3}

ight)sinx=x−

6

1

x

3

+O(x

3

)arcsinx=x+

6

1

x

3

+O(x

3

)

cos ⁡ x = 1 − 1 2 x 2 + x 4 4 ! + 0 ( x 4 ) ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 + O ( x 3 ) cos x=1-frac{1}{2} x^{2}+frac{x^{4}}{4 !}+0left(x^{4}

ight) quad ln (1+x)=x-frac{1}{2} x^{2}+frac{1}{3} x^{3}+O(x^{3})cosx=1−

2

1

x

2

+

4!

x

4

+0(x

4

)ln(1+x)=x−

2

1

x

2

+

3

1

x

3

+O(x

3

)

tan ⁡ x = x + 1 3 x 3 + O ( x 3 ) arctan ⁡ x = x − 1 3 x 3 + O ( x 3 )

an x=x+frac{1}{3} x^{3}+O( x^{3}) quad arctan x=x-frac{1}{3} x^{3}+Oleft(x^{3}

ight)tanx=x+

3

1

x

3

+O(x

3

)arctanx=x−

3

1

x

3

+O(x

3

)

e x = 1 + x + 1 2 x 2 + 1 6 x 3 + 0 ( x 3 ) ( 1 + x ) a = 1 + a x + + a ( a − 1 ) 2 ! x 2 + O ( x 2 ) e^{x}=1+x+frac{1}{2} x^{2}+frac{1}{6} x^{3}+0left(x^{3}

ight) quad(1+x)^{a}=1+a x++frac{a(a-1)}{2 !} x^{2}+Oleft(x^{2}

ight)e

x

=1+x+

2

1

x

2

+

6

1

x

3

+0(x

3

)(1+x)

a

=1+ax++

2!

a(a−1)

x

2

+O(x

2

)

泰勒公式是等号而不是等价,这就使所有函数转化为幂函数,在利用高阶无穷小被低阶吸收的原理,可以秒***大部分极限题。

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。邮箱:303555158@QQ.COM。 欢迎关注 企业摆账网

企业摆账网

企业摆账网提供个人/企业摆账,大额存单质押摆账,银承摆账,工程亮资,企业增资验资,公司注册资本实缴,代办验资报告,企业存款证明,企业资金证明以及上市公司审计过账和美化财务报表等大额资金业务。
扫一扫,添加客服微信
添加客服微信,免费咨询!

Copyright © 格特瑞商务咨询-企业摆账网 版权所有 | 黔ICP备19002813号