什么是加强学习

网友 百科知识 2026-01-23 12:27:11 0

强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方**之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。

按给定条件强化学习可分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL),以及主动强化学习(active RL)和被动强化学习(passive RL)。

强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。

深度学习模型可以在强化学习中得到使用,形成深度强化学习。强化学习理论受到行为主义心理学启发,侧重在线学习并试图在探索-利用(exploration-exploitation)间保持平衡。

不同于监督学习和非监督学习,强化学习不要求预先给定任何数据,而是通过接收环境对动作的奖励(反馈)获得学习信息并更新模型参数。强化学习问题在信息论、博弈论、自动控制等领域有得到讨论,被用于解释有限理性条件下的平衡态、设计推荐系统和机器人交互系统。一些复杂的强化学习算法在一定程度上具备解决复杂问题的通用智能,可以在围棋和电子游戏中达到人类水平。

Tag: 加强学习
免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。邮箱:303555158@QQ.COM。 欢迎关注 企业摆账网

企业摆账网

企业摆账网提供个人/企业摆账,大额存单质押摆账,银承摆账,工程亮资,企业增资验资,公司注册资本实缴,代办验资报告,企业存款证明,企业资金证明以及上市公司审计过账和美化财务报表等大额资金业务。
扫一扫,添加客服微信
添加客服微信,免费咨询!

Copyright © 格特瑞商务咨询-企业摆账网 版权所有 | 黔ICP备19002813号