一元线性微分方程求解公式

网友 百科知识 2026-01-23 08:25:40 1

举例说明:(x-2)*dy/dx=y 2*(x-2)^3 解: 因为:(x-2)*dy/dx=y 2*(x-2)³ (x-2)dy=[y 2*(x-2)³]dx (x-2)dy-ydx=2*(x-2)³dx [(x-2)dy-ydx]/(x-2)²=2*(x-2)dx d[y/(x-2)]=d[(x-2)²] y/(x-2)=(x-2)² C (C是积分常数) y=(x-2)³ C(x-2) 所以原方程的通解是y=(x-2)³ C(x-2)(C是积分常数)。 一阶线性微分方程的定义: 关于未知函数y及其一阶导数的一次方程,称之为一阶线性微分方程。

1、写出对应于非齐次线性方程的齐次线性方程,求出该齐次线性方程的通解。

2、通过常数易变法,求出非齐次线性方程的通解。

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。邮箱:303555158@QQ.COM。 欢迎关注 企业摆账网

企业摆账网

企业摆账网提供个人/企业摆账,大额存单质押摆账,银承摆账,工程亮资,企业增资验资,公司注册资本实缴,代办验资报告,企业存款证明,企业资金证明以及上市公司审计过账和美化财务报表等大额资金业务。
扫一扫,添加客服微信
添加客服微信,免费咨询!

Copyright © 格特瑞商务咨询-企业摆账网 版权所有 | 黔ICP备19002813号