施密特正交化公式

网友 百科知识 2026-01-23 05:47:03 1

施密特正交化公式是ei=βi/||βi||。施密特正交化是求欧氏空间正交基的一种方法。从欧氏空间任意线性无关的向量组α1,α2……αm出发,求得正交向量组β1,β2……βm,使由α1,α2……αm与向量组β1,β2……βm等价,再将正交向量组中每个向量经过单位化,这种方法称为施密特正交化。
线性无关向量组未必是正交向量组,但正交向量组又是重要的,从一个线性无关向量组α1,α2……αm出发,构造出一个标准正交向量组e1,e2……em,并且使向量组α1,α2……αr与向量组e1,e2……er等价可以通过施密特正交化方法就可以实现。下面就来介绍这个方法,由于把一个正交向量组中每个向量经过单位化,就得到一个标准正交向量组,

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。邮箱:303555158@QQ.COM。 欢迎关注 企业摆账网

企业摆账网

企业摆账网提供个人/企业摆账,大额存单质押摆账,银承摆账,工程亮资,企业增资验资,公司注册资本实缴,代办验资报告,企业存款证明,企业资金证明以及上市公司审计过账和美化财务报表等大额资金业务。
扫一扫,添加客服微信
添加客服微信,免费咨询!

Copyright © 格特瑞商务咨询-企业摆账网 版权所有 | 黔ICP备19002813号