数学函数6个周期性公式推导
函数周期性公式及推导:f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。
f(x+a)=-f(x)
那么f(x+2a)=f[(x+a)+a]=-f(x+a)=-[-f(x)]=f(x)
所以f(x)是以2a为周期的周期函数。
f(x+a)=1/f(x)
那么f(x+2a)=f[(x+a)+a]=1/f(x+a)=1/[1/f(x)]=f(x)
所以f(x)是以2a为周期的周期函数。
f(x+a)=-1/f(x)
那么f(x+2a)=f[(x+a)+a]=-1/f(x+a)=1/[-1/f(x)]=f(x)
所以f(x)是以2a为周期的周期函数。
Tag:
函数的周期性
免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。邮箱:303555158@QQ.COM。
欢迎关注 企业摆账网
